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The use of the method of potentials to construct eigenfunctions in cones for problems of potential 

theory and the theory of elasticity led to one-dimensional integral equations of the second kind with 

kernels in the form of integrals [l]. Hence, the conditions for their convergence necessitated 

introducing limitations on the permissible values of the exponents in the asymptotic form of the 

solutions (they must be less than unity). In this paper we propose to eliminate these limitations by 

using regularization (in the sense employed in the theory of generalized functions [2]) of these 

diverging integrals. Examples of calculations of model problems are given. The algorithm for 

calculating the kernel of the integral equations obtained is also modified (in general), taking into 

account the nature of the asymptotic form of the integrand at infinity. 

WEWILL consider the Neumann problem as an example. Suppose we have a cone bounded by the surface 
8 = B(p), 0 < cp c 27r and r > 0. It is required to determine in it a harmonic function, whose normal 
derivative is zero. We will start form the representation of the eigenfunction in the form r’u(‘p, 0) (the 

case when there are associated functions can be investigated similarly). Then, we obtain the representat- 
ion in the form r%(q) on the surface of the cone for contraction of the eigenfunction. 

The function iJ(cp) satisfies a Fredhohn integral equation of the second kind 
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Here S is the surface of the cone, q and q1 are points with coordinates (PI r(q) and f3( rp), and ql, q and 
6(rp,). The relationship r(rp) also defines the contour on which we require the equation to be satisfied. 

This contour can be chose fairly arbitrarily, but it is best that the discrete set of points used for the 
numerical realization for a specified contour should not have common points with the points introduced 
when evaluating the integrals. We will rewrite Eq. (1) in the following expanded form 
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Since the asymptotic form of the integrand of the inner integral at infinity has the form ram’, it is natural 
to include for the existence of regularization considerations [2, p. 971 relating to the integral of that 

function. On the semiaxis from zero to infinity we will arbitrarily introduce an intermediate point a and 
the integral is decomposed into two integrals. Then 

When Rep > -1 the first integral exists and is equal to a”“/ @+l). The function obtained is analytic 
over the whole plane of the complex variable, with the exception of the point Jo = -1. 

The second integral exists provided Rep < -1, it is equal to --up” /@ + l), and is also a function that is 
analytic over the whole plane, with the exception of the point p = -1. Summing, we arrive at the fact that 

the integral (3) is equal to zero for any value of p, which enables us to convert the inner integral in Eq. (2) 
to the form 

On k-2 
I’, h(91*‘*)dr,* E(cp*.r,) =I, (9,,r,) - 1 (4) 
0 

It is obvious that when 1 c 2 < 2 the integral is convergent. Hence, the regula~ation procedure in fact 
reduces to subtracting from the integrand the term which gives rise to divergence. In a similar way we can 

ensure that a convergent representation is obtained for large values of ;1. To do this it is necessary to 
obtain an expansion at infinity of the function Z,(rp,, rL) for the right number of terms. 

The convergent representation in the range 2 c il < 3 will have the form 

We will present the results of some calculations of test problems whose solutions were obtained [3] by 
the method of separation of variables. We considered the problem for a circular cone, and to shorten the 
calculations we used the dependence of the solution on the angular coordinate established there, and it 
was therefore sufficient to require that the integral equation need be satisfied only at one point of the 
contour (r = 1, cp = 0). The solution of the problem was then reduced to determining the value of ;3. for 
which the integral in (2) was equal to -2 K. 

We considered two solutions of the Ne~ann problems r 1~4~~*~~~(cos~) and tim cos~~~~~~(~s~) we 

obtain the’values of the exponents 1.22 and 2.92 by calculation. 
A solution of Dirichlet problems was obtained in a similar way. We used equations obtained on the 

basis of the potential of a double layer. In this case, the integral equation differed from (1) only in the sign 
in front of the integral. We considered two solutions of the Dirichlet problems: r1245~~~@&5(c~~0) and 

r2~‘36co~2@$,,J~~~t9). The values of the exponents 1.22 and 2.10 were obtained by calculation. 
The solutions of the Neumann problem with an exponent 2.92, and equally with exponent 0.86, invol- 

ved certain computational difficulties. To achieve the proper accuracy the integration had to be carried 
out over the generatrix on very large sections, since the integrand decreased slowly. A mod~i~tion of the 
algorithm is proposed (irrespective of the fact of regularization, since we are dealing with converging 
integrals), which consists of taking into account the asymptotic form of the integrand at infinity. Suppose 
it is required to satisfy the integral equation at a certain point. When calculating the inner integral (from 
zero to infinity) we choose a certain point on the generatrix whose distance from the vertex of the cone is 
of the same order as the point at which the integral is evaluated, and we integrate from zero to this point 
and from it to infinity. We leave the first integral unchanged, while in the second we add and subtract the 

following coefficient of its expansion in negative powers of the radius to the factor with degree rl. The 

term with the plus sign forms a separate integral, which can be evaluated explicitly. Obviously the 

remaining integral can be calculated more effectively. 
We will give the final expression for the integral in the range 2 < a < 3 
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We carried out calculations for values of the exponents of 0.5 and 0.9. The integrals were evaluated at 
the point at unit dktancz from the vertex of the cone, and the auxiliary point introduced above was placed 

at a distance of 10. By considering the asymptotic form an accuracy was achieved to the third place in the 
first case in a section of length 10, and in the second in a section of length 20. At the same time, cal- 

culations carried out ignoring the asymptotic form in the first case required integration over a section of 
length 3x 104. In the second case, integration over a section of length lo5 led to an error of 35%. 

Hence, the results of the calculations confirm the effectiveness of the modification, particularly for 
values of the exponents close to integer numbers but less than them. 
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